
FITBITE

By: Group 21

Overview
01

Problem

- Struggle with tracking your meals?
- Not knowing what you’re eating?
- Need help with fitness goals?

3

We have the
solution…

4

Introducing FitBite!

- A calorie tracker app that integrates AI
(Google Gemini)

5

Gives accurate macronutrient data:
- Calories
- Protein
- Fats
- Carbs
- Sugar

6

With just a
simple click of a
picture

Our targeted users

- Fitness enthusiasts
- Wanting to gain/lose/maintain weight
- Anyone who wants to optimize their nutrition

Features

- Main Feature: Integrated camera
- Being able to add or delete meal
- Login System
- Get recommendations (Bulk or Cut)
- Get workout plans based on your goals
- Set goals for yourself and track your progress

Functional & Non-Functional
Requirements

System Architecture
02

MVC
(Model-View-Controller)

Model:
The backend API, which handles meal
analysis and data management, acts as
the model by maintaining and processing
data through Gemini and database
operations.

View:
The React native frontend components
represent the view by rendering UI and
visualizing the app data.

Controller:
Frontend functions explicitly handle user
interactions and logic, sending requests
from the view to the model via APIs.

Design
Patterns

Singleton:
Express server explicitly acts as a Singleton,
ensuring that only one instance manages all
incoming API requests consistently:

Explicitly one instance running throughout
the application’s lifecycle

Factory:
A clear use of the Factory Pattern can
be seen in the Axios HTTP requests handling
API calls explicitly in a modular fashion:

SOLID Principles
Single Responsibility:
Every module explicitly has a single,
clearly defined responsibility:

Open-Closed:
Components explicitly follow
this principle as they allow
extension without modification:

Liskov Substitution
React components explicitly follow
LSP as each component can
substitute another:

Interface Segregation:
The project explicitly segregates
interfaces based on usage:

Dependency Inversion:
Explicitly implemented DIP by depending
on abstractions rather than concrete
implementations:

Backend

- Technologies Used: MySQL,
AWS RDS, Node.js, Elastic
beanstalk

- Deployment Using Elastic
beanstalk

- AWS RDS: Cloud-based
relational database service

Frontend

- Technologies Used: Figma,
React Native, Photoshop

Sequence Diagram

Testing Strategies
03

- White Box Testing

- Black Box Testing

- API Testing

Testing Strategies used

- Conducted Unit tests
utilizing a JavaScript
testing framework called
Jest

- Testing key functions of
our system

White Box Testing

Example: BMI Calculation

Output

Black Box Testing

- Exploratory Testing
- Conducting System Tests
- Seeing if everything ran

smoothly

- We played around with it
to see

API Testing

- Postman
- Create and execute HTTP

requests and check
responses

Live Demo
05

